
Introduction to
RSX-11M

Order No. AA-2555C-TC

Introduction to
RSX-11M

Order No. AA-2555C-TC

RSX-11 M Version 3.1

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, May 1974
Revised: November 1976

December 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright ~ 1974, 1976, 1977 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-lQ
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-2Q
RTS-8

12/77-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-Il
ITPS-IQ

CONTENTS

PREFACE

CHAPTER 1 THE RSX-llM AND RSX-llS OPERATING SYSTEMS

1.1
1.2

CHAPTER 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.3

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3

CHAPTER 4

RSX-11M
RSX-11S

RSX-11M APPLICATIONS

REAL-TIME APPLICATIONS
Data Acquisition
Process Control
Manufacturing
Laboratory and Medical Data Processing

SUPPORTED LANGUAGES AND PROGRAM DEVELOPMENT
COMPUTER NETWORKS

REAL-TIME MULTIPROGRAMMING

MEMORY ORGANIZATION
Mapped and Unmapped Systems
Partition Types
Subpartitions

EXECUTIVE CONTROL
Task State
Priority
Checkpointing
Distributing CPU and Memory Resources
Round-robin Scheduling
Swapping
Significant Events
Example of a 16K Unmapped System

SYSTEM DIRECTIVE FUNCTIONS
Event Flags
System Traps
Extended Logical Address Space

SYSTEM OPERATION

4.1 THE MCRINTERFACE
4.1.1 External Scheduling of Task Execution
4.1.2 Privileged Commands
4.1.3 Indirect Command Files
4.1.4 The MCR Indirect File Processor
4.1.4.1 Symbols
4.1.4.2 Symbol Value Substitution
4.2 TERMINAL OPERATION
4.2.1 Attached Terminals
4.2.2 Slave Terminals
4.3 MULTIUSER PROTECTION
4.3.1 Public and Private Devices

iii

Page

v

1-1

1-1
1-1

2-1

2-1
2-1
2-2
2-2
2-2
2-3
2-3

3-1

3 ... 1
3-1
3-2
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-8
3-9
3-9
3-9

4-1

4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4

CHAPTER

CHAPTER

INDEX

FIGURE

4.4
4.4.1
4.4.2
4.4.3

5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.3
5.3.1
5.3.2
5.4

6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1

6.2.2
6.3

3-1

3-2
5-1

CONTENTS (Cont.)

SYSTEM MAINTENANCE FEATURES
Error Logging
Diagnostic Tasks
Power Failure Restart

PROGRAM DEVELOPMENT

PROGRAMMING LANGUAGES AND SORT UTILITY
MACRO-II
FORTRAN
COBOL
SORT-II
BASIC-II
BASIC-PLUS-2

EDITING UTILITIES
DEBUGGING AIDS

Online Debugging Tool (ODT)
Post-Mortem and Snap-Shot Dumps

THE TASK BUILDER

FILES AND I/O OPERATIONS

FILES-II
File Ownership and Directories
File Protection
File Specifiers
File Manipulation

TASK I/O OPERATIONS
File Control Services and Record Management
Services
Device Independence

PHYSICAL I/O OPERATIONS

FIGURES

Comparison of Sequential and Concurrent
Execution of Programs . .
Sample Unmapped System Memory Layout
Steps in Creating a FORTRAN Task

iv

Page

4-5
4-5
4-5
4-6

5-1

5-1
5-1
5-1
5-2
.5-2
5-2
5-2
5-3
5-3
5 3
5-4
5 4

6-1

6-1
6 1
6-2
6-2
6-2
6-3

6-3
6-4
6-4

Index-l

3-3
3-7
5-5

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The purpose of this manual is to introduce the basic concepts and
capabilities of RSX-llM and RSX-llS. To understand the subjects
discussed, the reader needs a general knowledge of computing terms and
principles. However, the reader does not need to have a previous
knowledge of either system.

0.2 STRUCTURE OF THE DOCUMENT

The manual contains 6 chapters that discuss the following topics:

Chapter I

Chapter 2

Chapter 3

A brief description of RSX-llM and RSX-IIS

RSX-llM applications

Memory structures
multiprogramming

System operation

and control of real-time

Chapter 4

Chapter 5 Program development and associated utilities

Chapter 6 File system and I/O operations

Q.3 ASSOCIATED DOCUMENTS

The RSX-IIM/RSX-IIS Documentation Directory defines the intended
readership of each manual in the RSX-llM/RSX-llS set and provides a
brief synopsis of each manual's contents.

For detailed information about PDP-II hardware, readers should refer
to the following books:

The PDP-II Peripherals Handbook

The PDP-Il/04/05/l0/35/40/45 Processor Handbook

The LSI PDP-II/03 Processor Handbook

The PDP-ll/34 Processor Handbook

The PDP-ll/60 Processor Handbook

The PDP-ll/70 Processor Handbook

v

CHAPTER 1

THE RSX-IIM AND RSX-llS OPERATING SYSTEMS

1.1 RSX-IIM

RSX-IIM is a real-time multiprogramming operating system designed for
the PDP-II series of DIGITAL computers. The design of RSX-IIM is
specifically geared toward quick response to real-time events; but
the multiprogramming capability of RSX-IIM allows real-time activity
to be combined with program development and other less urgent user
applications. At one extreme, RSX-IIM can be used as a dedicated,
stand-alone process controller; at the other, it can be a multiuser
system used primarily for developing and running applications
programs.

RSX-IIM offers a wide range of services and utilities from which to
choose. (Some of these options are automatically available as a basic
part of RSX-IIM; others must be purchased under separate license.)
Each installation selects from these options to shape its version of
RSX-IIM according to the chosen hardware (PDP-II processor and
peripherals) and to the end purpose of the computer system. When an
installation has decided upon the services and utilities appropriate
to its requirements, the user performs a procedure called system
generation to create the tailored RSX-IIM system.

Every installation initially receives a minimal RSX-IIM system on
distribution media. This minimal, but completely operational, system
is used to generate the target system in two phases. The first phase
defines and assembles the Executive (see Chapter 3 for a detailed
description of the Executive) by conducting a dialogue with the user.
Query programs pose questions at a terminal; the answers to the
questions then determine the Executive service options, processor
options, and peripheral devices to be incorporated into the system.
The second phase builds the Executive, allows the user to define
memory structures (called partitions), and builds and installs system
programs. The user then completes the process by bootstrapping and
saving the new system.

When an installation decides to
configuration, another system
version of RSX-IIM.

1.2 RSX-llS

change its hardware or software
generation is performed to update the

RSX-llS is a memory-only version of the disk-based RSX-IIM operating
system. RSX-llS can operate within a minimum of 8K words of memory
(leaving 4K words for user programs), up to a maximum of 124K words.
It is fully compatible internally with RSX-IlM, supports an identical
I/O driver interface, and is a compatible subset at the user level.
Drivers written to run on one system can be incorporated and run on

1-1

THE RSX-IIM AND RSX-llS OPERATING SYSTEMS

the other system without change. Any nonprivileged user program that
executes under RSX-llS V2.l can execute under RSX-llM V3.l without
change, following a re-link of the object program. The same holds
true for RSX-llS V2.l and RSX-llD V6.2, so long as the program does
not use memory management directives.

Because RSX-llS is a memory-only system, it does not support a file
system, nonresident tasks, checkpointing, or program development.
Furthermore, it does not support dynamic memory allocation of
system-controlled partitions in a mapped system. Its main purpose is
to provide a runtime environment for the execution of tasks on a
processor that has a modest complement of peripheral devices.

The user interface to the RSX-llS system is a subset
Monitor Console Routine (MCR) called Basic MCR.
compatibility is provided.

of the RSX-llM
Strict subset

Two additional privileged tasks are
RSX-llS system. The Online Task
load, and fix tasks in a system.
program (SIP) saves an image of an
bootstrapping.

available for inclusion in an
Loader (OTL) is used to install,
The System Image Preservation

operational system for subsequent

Program development and system generation for an RSX-llS system
requIre a host RSX-llM V3.l or RSX-llD V6.2 system. Tasks may be
written, assembled or compiled, linked on the host system, and then
transported to an RSX-llS system for execution.

1-2

CHAPTER 2

RSX-IIM APPLICATIONS

This chapter discusses both general and specific RSX-IlM applications.
It illustrates several real-time jobs that can be handled by RSX-IIM,
and it introduces two· important features that affect RSX-llM's
potential uses. These two features are RSX-llM's program development
capability and network communications.

Real-time events often demand immediate and full access to available
resources at regular and irregular intervals. Between peak load
times, the computer resources can be used to run less urgent jobs,
such as program development, payroll processing, and offline data
reduction. By means of the mechanisms described in Chapter 4, RSX-IlM
can pre-empt the less urgent programs whenever it needs to service a
real-time event.

RSX-llM can manage the concurrent operation of both real-time and less
time-dependent programs. This capability means that an RSX-llM
installation can use idle time to its best advantage. In fact,
non-real-time applications can comprise the major work load of an
RSX-IlM system.

2.1 REAL-TIME APPLICATIONS

Real-time applications are specifically those jobs that require
response to physical events as they occur.

2.1.1 Data Acquisition

Data acquisition is the collection of physically generated data for
subsequent use in evaluation and control. A typical data acquisition
application requires several user programs to respond concurrently to
bursts of data. RSX-IIM multiprogramming allows the concurrent
execution of user programs required to service such data acquisition
applications. For example, RSX-IIM, under user program direction, can
process data acquired from instruments such as spectrometers,
flowmeters, and thermocouples.

RSX-IlM provides a rapid response time to external stimuli because the
system or user-written programs that control peripheral devices are
linked directly to the PDP-II hardware interrupt vectors.

2-1

RSX-IIM APPLICATIONS

2.1.2 Process Control

To control the behavior of a continuous process, a process control
application usually involves data acquisition, analysis, and a
feedback loop. Oil refineries and steel rolling mills are examples of
industries that require such processes.

The signals that the PDP-II receives from devices attached to the
process are called process inputs. By reading and operating on
various process inputs, RSX-IIM software can monitor the status of
many parts of the process, such as temperatures, flow rates, and the
amount of raw materials being used. Engineering and operational data
stored in the system can be used to determine what action should be
taken to keep the process running properly. Further decisions can be
made by control optimization programs, which make adjustments based on
interrelationships of various parts of the process. After operational
decisions have been made, RSX-IIM, directed by user programs,
generates signals that control the valves, switches, and relays that
in turn control the process. These signals are called process
outputs.

2.1.3 Manufacturing

In a manufacturing environment, application tasks running under
RSX-IIM can monitor manufacturing operations, test the quality of
products, furnish production data to higher level production and
inventory control systems, and manage the flow of work between
departments. Data in these applications can be collected directly
from sensors or entered by operating personnel into special devices
located in the manufacturing plant.

2.1.4 Laboratory and Medical Data Processing

Laboratory settings usually require a small computer system capable of
performing one or more precisely defined real-time activities.
Possible laboratory applications include:

• Measurement of X-ray diffraction

• Gas chromatography

• Psychology experiments such as stimulus presentation

• Particle acceleration

Many medical applications have the same requirements as other
laboratory settings. Patient monitoring, for example, demands instant
response to any changes in the patient's condition. A PDP-II
connected to monitoring devices can keep a continual log of the
patient's condition; and user-written programs can analyze the
recorded data as an aid to diagnosing the symptoms.

RSX-IIM can run in the small machines (16K or 24K minimum, leaving 8K
for user programs) suitable to a laboratory environment. It also
provides the necessary rapid response to real-time events and the
program development facilities needed to create specialized software
systems.

2-2

RSX-IIM APPLICATIONS

2.2 SUPPORTED LANGUAGES AND PROGRAM DEVELOPMENT

The real-time activities described above require specialized software
systems. RSX-IIM supports several programming languages so that the
user can choose those languages most suited to particular
applications. These languages are:

• MACRO-II Assembler

• FORTRAN IV or FORTRAN IV-PLUS

• COBOL

• BASIC-II

• BASIC-PLUS-2

RSX-IIM is particularly suited to environments that are subject to
changing requirements. Its range of supported languages allows an
installation both to improve existing applications and to develop new
types· of applications without changing operating systems. (Chapter 5
contains a brief description of the languages.) For example, an
installation that uses RSX-IIM to perform a real-time process control
application might decide to use its system to handle payroll as well.
All the real-time programs have probably been written in FORTRAN IV,
which is not ideal for commercial applications. with little impact on
the existing system, the installation might purchase RSX-IIM's COBOL
compiler and start developing payroll applications. The installation
has been able to increase substantially the function of its RSX-llM
system simply by adding on one of RSX-IIM's many optional software
features.

Another reason for RSX-IlM's adaptability to changing requirements is
its multiprogramming capability. RSX-IIM users enter source programs
and data from terminals. Because RSX-IlM supports the concurrent
operation of terminals, as well as multiprogramming, an installation
can continually update and enhance its applications by running
multiple-user program development hand in hand with the applications
themselves.

2.3 COMPUTER NETWORKS

A computer network is an interconnection of computer systems,
communication devices, and I/O devices. The computer systems, called
"nodes," are connected together by intercommunication hardware, called
"physical links." The nodes can be geographically remote from each
other; each is capable of performing applications-oriented functions.

An RSX-llM installation can purchase a DIGITAL software package called
DECNET-llM to connect its computer system to others to form a network.
(DECNET is also available with RSX-IIS.) DECNET-ll is the network
software provided for the RSX-Il operating systems.

DECNET-Il provides a basic intertask communication capability. A task
executing in one node can create a data path to a task executing in
the same or another node. While the tasks exchange data over the data
path, the DECNET-Il software oversees the exchange, performing
functions such as error detection. In addition, DECNET-Il provides
facilities that allow:

2-3

• Device sharing.
connect to and
located system.

RSX-IIM APPLICATIONS

Device sharing allows
use the peripheral

a DECNET-ll user to
devices of a remotely

• File sharing. File sharing permits the reading from, writing
to, and updating of files on a remotely located system.

• Program sharing.
remotely located
system.

A loadable program can be transferred to a
system to be loaded and executed by that

To provide these functions, DECNET-ll is designed as a layered
structure of protocols, which are formal sets of conventions governing
the format, control, and sequencing of message exchange.

2-4

CHAPTER 3

REAL-TIME MULTIPROGRAMMING

Real-time multiprogramming requires the
interaction of the following major elements:

precisely organized

• The Executive. The RSX-IIM Executive is the kernel of the
operating system, the software that directs program execution.

• Programs. A program is a sequence of instructions that
directs the computer in manipulating data to achieve some
goal. In RSX-IIM, executable programs are called "tasks."
Tasks can either be user-written or supplieq by DIGITAL.

• Memory. Memory is the hardware storage medium in which
programs actually reside and execute.

This chapter introduces the mechanisms related to memory and the
Executive that together produce the RSX-IIM real-time multiprogramming
environment. Section 3.1 describes how memory is organized. Section
3.2 discusses the role of the Executive. Program-related aspects are
considered in parts of both Sections 3.1 and 3.2, as well as in
Chapter 4. Section 3.3 discusses various system directives that are
part of the RSX-IIM multiprogramming scheme.

3.1 MEMORY ORGANIZATION

A task runs in a predetermined contiguous area of memory called a
partition. A partition has the following characteristics:

• A name

• A defined size

• . A fixed base address

• A defined type

The relationship between a task and the partition in which it runs
depends on whether the system is mapped or unmapped.

3.1.1 Mapped and Unmapped Systems

RSX-IIM is designed to run on almost all models of the PDP-II
processor. The PDP-II addressing mechanism allows a program to
address directly only 32K words of memory. To use memories larger
than 32K words, DIGITAL has a special hardware unit available with the
PDP-ll/34/35/40/45/50/55/60/70 processors. This special hardware,

3-1

REAL-TIME MULTIPROGRAMMING

called the KTII memory management unit, associates addresses expressed
in programs ("virtual" addresses in the range 0 to 32K) with actual
locations in memory (called "physical" addresses). Physical addresses
can range from 0 to 124K words on all processors other than the
PDP-II/70. Physical addresses on a PDP-II/70 can range from 0 to
1920K words.

A PDP-II system that includes a KTII memory management unit is called
a "mapped" system. Systems without a KTII are "unmapped."

Whether a system is mapped or unmapped affects the way in which
RSX-IIM users create tasks. Before a compiled program can run, it
must be processed by the Task Builder, a DIGITAL-supplied program that
produces the program unit, called a task, that actually runs in memory
(see Section 5.4 for further details). If a system is unmapped, users
must specify to the Task Builder the base address of the partition in
Which a task is to run. The resulting task cannot run in a partition
that has a base address different from the address specified to the
Task Builder.

In a mapped system, however, every task (other than a
mapped into the Executive) has a virtual base
Transparently to the user, the KTII maps the virtual
task to the actual physical addresses in which the
task in a mapped system can therefore run in any
enough to contain it.

3.1.2 Partition Types

privileged task
address of O.

addresses of a
task resides. A
partition large

RSX-IIM supports two types of partitions in which tasks can execute:

1. System-controlled.

2. User-controlled.

In a system-controlled partition, the Executive allocates available
space to accommodate as many tasks as possible at anyone time. This
allocation may involve shuffling resident tasks to arrange available
space into a contiguous block large enough to contain a requested
task. Only mapped systems support system-controlled partitions.

A user-controlled partition, however, is exclusively allocated to one
task at a time. This type of partition is supported by both mapped
and unmapped systems.

3.1.3 Subpartitions

A user-controlled partition may be subdivided into as many as seven
nonoverlapping subpartitions. Like its parent main partition, a
subpartition can contain only one task at a time. Since the
subpartitions occupy the same physical memory as the main partition,
tasks cannot be simultaneously resident in both the main partition and
one or more subpartitions. But since all the subpartitions can each
contain a task, up to seven tasks can potentially run in parallel
within a pre-empted main partition.

The purpose of subpartitioning is to reclaim large storage areas in
unmapped systems. For example, when a large task that requires a main
partition is either no longer active or can be pre-empted
(checkpointed), subpartitioning allows the partition space to be used
by a number of smaller real-time tasks.

3-2

REAL-TIME MULTIPROGRAMMING

3.2 EXECUTIVE CONTROL

The Central Processing unit (CPU) is the part of the computer that
actually executes instructions; only one task at a time can have
control of the cpu. Multiprogramming is possible because task
operation almost always involves more than CPU usage. A real-time
task that initiates a process and then waits for the process to
complete might not use CPU time while it is waiting. Therefore, while
one task waits for an event (for example, an I/O operation or a
real-time process) to complete, the Executive gives control of the CPU
to another task.

SEQUENTIAL EXECUTION CONCURRENT EXECUTION

I---------t~~ ELAPSED TIME ---------l~~1 ~-__i~~ ELAPSED TIME -----t~~1

PROGRAM A

PROGRAMS U
KEY PROGRAM C I[] II D

D DISK TIME

~ CPU TIME

TERMINAL TIME

Figure 3-1 Comparison of Sequential
and Concurrent Execution of Programs

Figure 3-1 illustrates the advantages of multiprogramming. When tasks
A, B, and C run in a system that does not support multiprogramming,
they must run one after the other. Task A reads some information from
disk, operates on it, and displays a report. Task B performs some
computation, displays a message, performs some more computation, and
writes the result to disk. Task C performs some computation, reads
some information from disk, performs some more computation, and writes
the result to disk. While one part of the system, such as the disk
drive, is busy, the other parts, such as the CPU, are idle.

A quite different sequence of operations is possible, however, if the
three tasks run concurrently in a multiprogramming system such as
RSX-IIM. The three resources shown (CPU, disk drive, and terminal)
are often simultaneously active; and the concurrent execution of the
three tasks takes less overall elapsed time than the sequential
execution of the same tasks.

In RSX-IIM, the Executive coordinates the execution of all tasks
resident in memory to achieve both efficient use of system resources
and rapid response to real-time demands. The following criteria
affect the way this coordination works:

3-3

REAL-TIME MULTIPROGRAMMING

• Task state

• Priority

• Checkpointing

• Round-robin scheduling

• Swapping

• Significant Events

3.2.1 Task State

A task is made known to the Executive by installing it. When a user
installs a task (by issuing a command from a terminal), the system
records a number of task parameters in a system-resident table called
the System Task Directory (STD). The recorded parameters include the
name and size of the task, the disk address at which the task's image
starts, and the name of the partition in which the task is to run.

An installed task is defined as a task that has an entry in the STD.
It is neither resident in memory nor competing for system resources.
The Executive considers it to be dormant until a running task or a
command issued from a terminal requests the Executive to activate it.
The Executive therefore recognizes two task states:

• Dormant. A dormant task is one that has been installed (has
an entry in the STD) , but has not been requested to run.

• Active. An active task is an installed task that has been
requested to run. It remains active until it exits,
terminates, or is aborted, when it returns to dormant state.

An active task can be in one of two substates, ready-to-run or
blocked.

1. Ready-to-run. A ready-to-run task competes with other
tasks for CPU time on the basis of priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

2. Blocked. A blocked task is unable
time for synchronization reasons
resource is not available.

to compete for CPU
or because a needed

The distinction between dormant tasks and active tasks is important in
a real-time system. A dormant task uses little memory; and yet when
the task is needed to service a real-time event, the Executive can
quickly and efficiently introduce it into active competition for
system resources. An installed task's STD entry enables this quick
response because it contains all the parameters the system needs to
retrieve the requested task. Note that the number of installed,
dormant tasks can, and usually will, far exceed the number of active
tasks.

When the Executive receives a request to activate
nonresident task, it performs a series of actions:

3-4

a dormant

REAL-TIME MULTIPROGRAMMING

• It allocates required memory resources.

• It brings the task into memory (if there is space available in
its partition).

• It places the task in active competition for system resources
with other resident tasks.

If the partition in which a task is installed is fully occupied and no
resident task can be checkpointed (see Section 3.2.3), the task is
placed in a queue by priority with other activated tasks, each waiting
for space to become available in its partition.

3.2.2 Priority

Active tasks compete for system resources on the basis of priority and
resource availability. The priority of a task is determined by a
number assigned to the task when it is built, when it is installed, or
when it is running. The number is in the range 1 to 250 (decimal),
where a higher number indicates a higher priority. The highest
priority task that has access to all the resources it needs has
control of the cpu. When that task becomes blocked (to wait for an
I/O transfer to complete, for example), the Executive looks for
another task to use the cPU. The chosen task is the one that has the
highest priority and has access to all the resources it needs.

In an RSX-IIM installation that mixes real-time applications with less
urgent work, the real-time tasks should have higher priority numbers
assigned. This arrangement would ensure that the Executive gives cpu
time to the real-time tasks ahead of the others.

Text editors, which are commonly used in program development systems,
spend a large percentage of their runtime waiting for terminal I/O to
complete and are therefore out of competition for cpu time. However,
when the I/O completes, the terminal user wants a rapid response. To
gain the rapid response desired, the system manager can assign to the
text editors a priority that is higher than more CPU-bound tasks like
the Task Builder or the Assembler.

3.2.3 Checkpointing

Checkpointing provides a means by which tasks not currently resident
in memory can gain access to the CPu. In some instances, an activated
task cannot compete for the processor because the partition in which
it was installed is fully occupied. If the partition contains a task
that has a lower priority and is checkpointable, the Executive can
move that task out of memory to disk to make room for the higher
priority task. When the latter task is finished, the pre-empted task
is reloaded and continues processing from the point at which it was
interrupted. This roll-out, roll-in process is called checkpointing.

When a task can be checkpointed, checkpoint space equal to the size of
the task (or the size of the partition that contains the task) must be
available on disk. (Checkpoint space contains the rolled-out task
while a higher priority task executes.) Checkpoint space is allocated
either statically at task build, or dynamically at runtime. The
RSX-IIM user can use both kinds of checkpointing to balance the
advantages and disadvantages of the different allocation methods.

3-5

REAL-TIME MULTIPROGRAMMING

When submitting a compiled program to the Task Builder, the user can
request that checkpoint space be allocated in the task image file.
(The task image file contains the executable task.) While the task is
running, its checkpoint space is always available on disk, whether or
not the Executive actually checkpoints the task.

Dynamic allocation of checkpoint space allows a more efficient use of
disk storage. Instead of reserving disk space equal to the size of
each checkpointable task, the user can create one or more checkpoint
files on disk to contain all checkpointed tasks. The size of the
files depends on an estimation of the checkpoint space required at any
gIven time. When the system allocates checkpoint space dynamically,
tasks do not need to be built as checkpointable. Instead, the user
decides if a task can be checkpointed when the task is installed. The
user creates a checkpoint file, independently of individual tasks, by
issuing a command from a terminal. Then, when the Executive needs to
checkpoint a task, it rolls the task out to available space in a
checkpoint file. A drawback to dynamic allocation of checkpoint space
is that space in a checkpoint file may not always be available.

3.2.4 Distributing CPU and Memory Resources

The Executive allocates CPU and memory resources on the basis of
priority. Two system generation options, round-robin scheduling and
swapping, influence the allocation of resources when numerous active
tasks have equal or similar priorities.

3.2.4.1 Round-robin Scheduling - When numerous competing memory
resident tasks have equal priorities, the Executive tends to give CPU
time more often to those tasks that appear first in the STD queue.
(Entries with equal priorities in the STD normally appear in the order
in which the tasks were installed.) To avoid this problem, RSX-llM
provides a system generation option called round-robin scheduling.
When round-robin scheduling has been incorporated, a scheduling
algorithm periodically rotates tasks of equal priority within the STD.
The overall effect is to distribute use of the CPU more evenly,
because each equal priority task has its turn toward the head of the
queue.

3.2.4.2 Swapping - Another problem arises when several active tasks
with similar or equal priorities are competing for partition space in
memory. A task cannot normally cause the Executive to checkpoint a
task with the same or a higher priority. Circumstances can therefore
prevent the task of equal or lower priority from accessing memory.

Swapping is a variation of checkpointing that enables the Executive to
checkpoint tasks with similar priorities in and out of memory. (The
tasks must be checkpointable.) When an eligible task begins to run,
the Executive adds a "swapping priority" to the task's normal running
priority. The Executive then decrements the swapping priority (which
eventually has a negative value) as the task runs. If the sum of the
decremented swapping priority and the task's running priority causes
the running task to have an actual priority less than that of a
competing task, the Executive checkpoints the running task to make
room for the competing task. The Executive then places the rolled-out
task at the end of the queue of active tasks competing for memory.
(The swapping priority does not affect CPU scheduling or I/O
dispatching, which are governed solely by the task's running
priority.)

3-6

REAL-TIME MULTIPROGRAMMING

3.2.5 Significant Events

Certain occurrences called significant events cause the Executive to
re-evaluate the eligibility of all active tasks to run. When a
significant event occurs, the Executive scans the queue of active
tasks and runs the highest priority ready-to-run task. Significant
events include the following:

• An I/O completion

• A task exit

• The removal of an entry from a clock queue

• The execution of one of several system directives issued by a
task

• The execution of the round-robin scheduling algorithm

3.2.6 Example of a 16K Unmapped System

Figure 3-2 illustrates the memory layout of a sample 16K unmapped
system. The Executive region, requiring 8K, consists of the Executive
and the user-controlled main partition named SYSPAR. This partition
contains the file system (FIIACP), the Monitor Console Routine (MCR) ,
and the Task Termination Notification routine (TKTN). The file system
is checkpointable and has a lower priority than MCR or TKTN.
Therefore, if the file system is running and an operator requests MCR,
the File System will be checkpointed, and MCR will be loaded and
initiated.

User
Area

Executive
Region

16K

8K

6K

o

PAR

8K

SYSPAR

RSX-IIM
EXECUTIVE

SUBC
2K

SUBB

3K

SUBA

3K

2K

6K

Figure 3-2 Sample Unmapped System Memory Layout

3-7

REAL-TIME MULTIPROGRAMMING

The user area is composed of a user-controlled main partition named
PAR8K, 8K in length, and three subpartitions, named SUBA, SUBB, and
SUBC. The 8K partition is used for program preparation tasks such as
the language processors and the Task Builder. These programs usually
have a low priority and may be checkpointable.

The three subpartitions are available for real-time tasks. Any time
one of the real-time tasks needs the processor and has a higher
priority than the task occupying the main partition, the contents of
the main partition will be checkpointed (if the occupant task is
checkpointable) .

If the partitions SUBA, SUBB, SUBC, and SYSPAR are occupied and the
tasks in them are ready to run, to which task does the Executive give
the CPU? The choice depends entirely on task priority, even for the
SYSPAR partition. Hence, the highest priority task will run next,
regardless of where it resides in memory.

3.3 SYSTEM DIRECTIVE FUNCTIONS

A system directive is a request from a task to the Executive to
perform an indicated operation. A programmer uses system directives
to control the execution and interaction of tasks; and the execution
of certain directives causes significant events to occur. In fact,
most significant events are caused, either directly or indirectly, by
the issuance of system directives. In this way, system directives are
a part of RSX-llM's multiprogramming scheme. Directly or indirectly,
they affect the way the Executive shares system resources among
simultaneously active tasks.

System directives enable tasks to perform functions such as the
following:

• Obtain task and system information

• Measure time intervals

• Perform I/O functions

• Manipulate a task's logical and virtual address space

• Suspend and resume execution

• Request the execution of another task

• Exit

System directives allow tasks to exploit some major system functions,
including the following:

• Event flags

• System traps

• Extended logical address space

These three system functions are discussed in Sections 3.3.1, 3.3.2,
and 3.3.3.

3-8

REAL-TIME MULTIPROGRAMMING

3.3.1 Event Flags

Significant events not only affect Executive management of task
execution; the tasks themselves can also use significant events to
coordinate internal task activity and to communicate with other tasks.
For example, a task can issue a system directive to associate an event
flag with a specific significant event. When that event occurs, the
Executive sets the associated flag. Therefore, by testing the state
of the flag, a task can determine whether or not the event has
occurred.

Sixty-four event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding event
flag number. The first 32 flags are local to each task and are set or
cleared as a result of each task's operation. The second 32 flags are
common to all tasks and are therefore called common flags. Common
flags can be set or cleared as a result of any task's operation.
Tasks use common flags to communicate with other tasks because one
task cannot refer to another task's local flags.

3.3.2 System Traps

System traps are transfers of control (also called software
interrupts) that provide tasks with another means of monitoring and
reacting to events. The Executive initiates system traps when certain
events occur. The trap transfers control to the task associated with
the event and gives the task the opportunity to service the event by
entering a user-written routine.

There are two distinct kinds of system traps:

• Synchronous System Traps (SSTs). SSTs detect events directly
associated with the execution of program instructions. They
are "synchronous" because they always recur at the same point
in the program when previous instructions are repeated. For
example, an illegal instruction causes an SST to occur.

• Asynchronous System Traps (ASTs). ASTs detect significant
events that occur "asynchronously" to the task's execution;
that is, the task has no direct control over the precise time
that the event occurs. For example, the completion of an I/O
transfer causes an AST to occur.

A task that uses the system trap facility issues system directives
that establish entry points for user-written service routines. Entry
points for SSTs are specified in a single table. AST entry points are
set by individual directives for each kind of AST. When a trap
occurs, the task automatically enters the appropriate routine (if its
entry point has been specified).

3.3.3 Extended Logical Address Space

An RSX-IIM task specifies an address in a 16-bit word. The largest
address that can be expressed in a l6-bit word is 65,536 bytes or
32,768 words (commonly referred to as 32K words). A task can
therefore only directly address up to 32K words. To avoid limiting
the size of a task to its addressing capability, a task can use
overlays that are defined at task build, or it can use memory
management directives.

3-9

REAL-TIME MULTIPROGRAMMING

An overlaid task is arranged into segments: a single root segment,
which is always in memory, and overlay segments, which can be read
into memory as required. The segments concurrently in memory cannot
exceed 32K words.

Memory management directives allow task segments resident in"memory to
exceed 32K words. The directives use the KTll hardware (see Section
3.l.l) to map task addresses to different logical areas within the
task. Instead of displacing task segments in memory, the task can
reside entirely in memory and map its virtual addresses to different
physical addresses.

RSX-llM defines three kinds of address space:

• Physical address space. Physical address space consists of
the physical memory in which tasks reside and execute.

• Logical address space. Logical address space is the total
amount of physical address space to which the task has access
rights.

• Virtual address space. Virtual address space corresponds to
the 32K of addresses that the task can explicitly specify in a
l6-bit word. If a task does not use memory management
directives, its logical and virtual address space directly
correspond. Using these directives, however, the task can map
its virtual addresses to different parts of its logical
address space. The net effect is to allow a task's logical
address space to exceed 32K.

The memory management directives also allow a task to expand its
logical address space dynamically. In other words, a task can access
logical areas that are not part of its static task image (the
executable task produced by the Task Builder). A task can issue
directives that create a new region of logical space and then map a
range of virtual addresses to the newly created region. A task can
also map its virtual addresses to logical areas that belong to another
task. The mapped area then becomes part of the former task's logical
address space.

One result of the ability to map virtual addresses is an increased
potential for task interaction by means of shared regions. For
example, at runtime a task can create a new region of logical space,
into which it writes a large amount of data. Any number of tasks can
then access that data by mapping a range of their virtual addresses to
the region. Another result is an ability to use a greater number of
common routines. Tasks can simply map to required routines at
runtime, rather than link to them at task build.

3-10

CHAPTER 4

SYSTEM OPERATION

RSX-IIM operating procedures vary from one installation to the next,
depending on the function of the computer system and its hardware
configuration. A laboratory may have a PDP-II/IO dedicated to one
real-time application, with a single disk and only one terminal, which
is sometimes used for limited program development. A lab technician
might oversee the computer system as one of many laboratory duties.
In contrast, a manufacturer may have a PDP-11/70 that performs a
process control job, all the company's accounting and payroll
applications, as well as substantial program development. Such an
installation could have a dozen or more terminals and numerous disk
and magnetic tape drives. An installation this size requires a
full-time operator to maintain the equipment and to manage the
company's data processing mix.

Although an RSX-IIM installation may not employ a person to attend to
the needs of the computer system, someone must know how to operate
RSX-IIM. This chapter discusses basic RSX-IIM operating concepts.
The term "operator" refers to anyone who interfaces with or oversees
RSX-IIM. Most operating concepts apply to all installations;
however, some features (multiuser protection, for example) are
optional.

4.1 THE MCR INTERFACE

An operator communicates with RSX-IIM by entering special commands at
a terminal. The terminal directs the special commands to the Monitor
Console Routine (MCR) processor. The MCR processor either executes
the commands itself, or it activates a system or user-written task
that can service the commands.

MCR commands allow an operator to:

• Start up the system

• Manage peripheral devices

• Control task execution

• Obtain system and task information

• Activate system or user-written tasks that request input from
the terminal

The MCR commands that control task execution are particularly
significant to system performance. An MCR command must be used to
install a task into the system (see Section 3.2.1). Therefore, an
operator establishes the base of installed tasks, which the Executive,

4-1

SYSTEM OPERATION

active tasks, and further MCR commands manipulate to fulfill the
purpose of the RSX-IIM system.

4.1.1 External Scheduling of Task Execution

An important MCR function is the external scheduling of task
execution. This type of scheduling works in conjunction with the
Executive's priority driven internal scheduling of active tasks. The
operator can include time parameters with the command that activates
an installed task. The time parameters request the Executive to run a
task:

• At a specified time from the current moment

• At a specified time from clock unit synchronization

• At an absolute time of day

• Immediately

All of these time options are available with or without periodic
rescheduling. RSX-IIM also supports an unlimited number of programmed
timers for each task in the system. The user task can create its own
timer, which the Executive then decrements at regular intervals. When
the timer reaches zero, the Executive sets an event flag or generates
an Asynchronous System Trap (AST) that passes control to the task at a
prespecified address.

4.1.2 Privileged Commands

To restrict the use of commands that directly affect system
performance, RSX-IIM considers some MCR commands and command options
to be privileged. An operator can issue a privileged command only
from a privileged terminal. Section 4.2 describes how a terminal
attains privileged status.

4.1.3 Indirect Command Files

An indirect command file is a text file containing a list of commands
exclusive to, and interpretable by, a single task. The interpreting
task is usually a system-supplied component of RSX-IIM, such as MCR,
the MACRO-II Assembler, or the Task Builder.

To initiate indirect files, the user replaces a command string with a
file specifier preceded by an at sign (@). The task requesting input
then accesses the specified file and reads and responds to the
commands contained within it. For example, to initiate a file of
MACRO-II commands the user enters the following:

MAC @INPT.CMD

The MACRO-II Assembler then accesses the file INPT.CMD for its
commands.

Indirect files can reference other indirect files, but the maximum
nesting depth is limited to four levels of files.

4-2

SYSTEM OPERATION

4.1.4 The MeR Indirect File Processor

Most tasks read and respond to commands contained in an indirect file
as if the commands were entered directly from a terminal. MCR,
however, has an indirect file processor that interprets indirect
commands. An MCR indirect command file can contain both MCR commands
and special commands (or directives) to be interpreted by the indirect
file processor itself. MCR optionally displays on the requesting
terminal every command retrieved from an MCR indirect command file.

The indirect file processor first reads the command file and
interprets each command line either as a command to be passed to MCR
or as a request for action by the processor itself. Processor
directives are distinguished by a period (.) as the first character in
the line. MCR commands have no special prefix characters.

4.1.4.1 Symbols - The MCR indirect file processor enables the user to
define symbols, which can then be tested or compared to control flow
through the indirect command file. The symbols themselves consist of
1 to 6 ASCII characters. The assigned value that defines a symbol can
be a true or false value, an octal or decimal number, or a character
string. The first directive to specify a symbol defines the symbol;
subsequent references test, compare, or redefine it.

4.1.4.2 Symbol Value Substitution - The symbols described above are
used in directives to the indirect file processor. Indirect MCR
commands can use the values assigned to string symbols by replacing a
normal parameter (for example, a device-unit) with the symbol name
enclosed in single quotation marks (for example, 'DEV'). When a
previous directive has enabled "substitution mode," the indirect file
processor replaces the symbol name enclosed in single quotation marks
with the string value assigned to the symbol. When the processor
encounters a single quote, it treats the subsequent text, up to the
second single quote, as a symbol. The processor then searches the
table of symbols for the corresponding string value, and substitutes
it in the MCR command line before the line is interpreted.

4.2 TERMINAL OPERATION

In RSX-IIM, a variable number of terminals can operate concurrently.
In addition, each terminal operates independently of others in the
system so that each can run a different task. In a system that
supports multiuser protection (see Section 4.3), a user must log onto
a terminal before issuing further commands. In other RSX-IIM systems,
a user can issue commands whenever the terminal displays an
appropriate prompt.

Section 4.1.2 explains that a user can issue privileged commands only
at a privileged terminal. In multiuser protection systems, individual
users are either p~ivileged or nonprivileged; when a user logs on,
the terminal assumes the privilege status of that user. In other
RSX-IIM systems, however, a terminal1s privilege status is determined
at system generation. Subsequent to system generation, a user can
issue an MCR command at a privileged terminal to modify the privilege
status of any other terminal connected to the system.

4-3

SYSTEM OPERATION

4.2.1 Attached Terminals

RSX-IIM allows tasks to request or "solicit" input from a terminal.
To ensure that a soliciting task receives input intended for it, the
task usually attaches to the terminal. While the task is attached,
the terminal directs all input to the attached task, with one
exception. The exception is a control C character (the C key typed
while pressing the CTRL key), which gains the attention of the MCR
processor. An attached terminal ensures that a soliciting task
properly receives its input; but it also allows a user to interrupt
the taskls control of the terminal to communicate with MCR. Note that
attaching to the terminal is a function of the task rather than of a
user.

Some applications may require that a user be denied access to MCR. In
this case, a task can attach to the terminal with a special
subfunction. The subfunction causes the system to generate an AST for
the attached task whenever someone enters unsolicited input, including
CTRL/C, at the terminal.

4.2.2 Slave Terminals

When an installation needs to dedicate a terminal exclusively to one
or more tasks, an operator issues an MCR command (or a task issues a
special I/O function) that sets the terminal to slave status. The
difference between a slave terminal and an attached terminal is that
the system ignores all unsolicited input, including CTRL/C, that is
entered at a slave terminal. Until the operator issues another MCR
command to delete the slave status, the terminal can only be used to
communicate with the task soliciting input from the terminal. An I/O
function issued by a task can also delete the slave status of a
terminal. Slave terminals are often dedicated to real-time
applications.

4.3 MULTIUSER PROTECTION

Multiuser protection, a system generation option, allows an RSX-IIM
installation to monitor and control individual users of the system.
As Section 4.2 states, individual users are either privileged or
nonprivileged. A system manager assigns a User Identification Code
(UIC) to each user, which determines the userls privilege status.

When logging onto a terminal, the user supplies a last name or UIC and
a password. If the user gives a name, the system finds the associated
UIC. The system then checks that the password matches the last name
or UIC, and sets the terminal to privileged or nonprivileged status,
according to the userls UIC.

4.3.1 Public and Private Devices

Multiuser protection systems allow nonprivileged users to issue some
MCR commands that are considered privileged in systems that do not
include the option. There are also several "multiuser" MCR commands
provided that do not exist in other versions of RSX-IIM. These
commands allow any user to allocate a device (a disk drive, for
example) as the userls private device; allocating the device prevents
other nonprivileged users from accessing it.

4-4

SYSTEM OPERATION

A nonprivileged user can access a private device to perform MCR
functions that are privileged in non-multiuser systems. These
functions include preparing a disk or magnetic tape for use by the
RSX-IIM file system and putting the disk or tape online and offline.

To complement the private device feature, multiuser protection allows
a privileged user to declare certain devices to be "public." Public
devices cannot be allocated to individual users. By declaring a line
printer to be public, for example, an operator can ensure that all
users have access to that commonly used output device.

4.4 SYSTEM MAINTENANCE FEATURES

4.4.1 Error Logging

RSX-IIM provides an error logging facility as a system generation
option for systems that are 24K words or larger. The error logging
facility monitors the hardware reliability of an RSX-IIM system; it
continually detects and records information about hardware errors as
they occur, regardless of whether the error is recoverable. Then, at
user-determined intervals, a formatting task can be run to generate
individual error and/or summary reports on some or all of these
errors. The Executive automatically retries recoverable errors;
whether or not recovery is successful, the user might be unaware that
the error occurred unless the system includes the error logging
facility.

In summary, error logging performs the following functions:

• Detects a hardware error as it occurs

• Gathers information about the error

• Stores the information in a file

• Formats the information to produce an error report

Control of the facility is shared between routines in the Executive
and specific error logging tasks. These routines and tasks interface
with each other to carry out the four operations described above.

An operator can generate a wide variety of error reports. Among many
options, the user can specify a report that covers a certain time
period, a certain device or group of devices, or perhaps a certain
type of error. The user may also request a report that contains only
information on individual errors, one that contains only summary
information, or one that contains both kinds of statistics.

Because the error log files may be written to a removable volume, an
operator can generate the reports either on site or at any other
RSX-IIM installation that supports the error logging facility.

4.4.2 Diagnostic Tasks

RSX-IIM also provides a group of diagnostic tasks for which Executive
support can be incorporated at system generation. A diagnostic task
tests a specific device to identify the source of any errors. RSX-IIM

4-5

SYSTEM OPERATION

diagnostic tasks test for malfunctions
magnetic tapes, and terminals. The tasks
require little storage space.

on most disks, DECtapes,
are simple to use and

When used in connection with error logging reports, the diagnostic
tasks can significantly reduce system downtime. The system manager
should regularly generate error reports to check on hardware
performance. When a number of errors indicates that a particular
device is beginning to malfunction, the manager can run the diagnostic
task for the erring device to help isolate the source of the errors.

Each diagnostic task has two modes of operation: customer mode and
service mode. In customer mode, the user simply activates the
appropriate task, which then runs to completion and reports its
findings. (Because the tests destroy any data resident on the device
being tested, only authorized users should be allowed to run
diagnostic tasks.) Service mode is intended for use by DIGITAL Field
Service engineers. Service mode allows the user to modify the test
content initially and to interrupt the running test to make further
modifications.

4.4.3 Power Failure Restart

RSX-llM includes a power failure restart facility that smooths out
intermittent short-term power fluctuations with little loss of service
or data. The facility functions in four phases:

• When power begins to fail, the CPU traps to the Executive,
where volatile register contents are stored, thereby
gracefully bringing system operations to a halt.

• When power is restored, the Executive again receives control
and restores the preserved state of the system.

• The Executive then schedules all device drivers that were
active at the time of the power failure at their power-fail
entry points (refer to Section 6.3 for a discussion of device
drivers). Drivers have the option of being scheduled either:

1. Whenever power fails, or

2. Only when power fails while the driver is servicing an
I/O request.

The drivers can then make any necessary restorations of state
(repeat an I/O transfer, for example).

• The Executive then determines if any user-level tasks have
requested notification of power failure (issued a system
directive that requested an AST on power recovery). The
Executive then initiates AST's for any tasks that have
requested them.

4-6

CHAPTER 5

PROGRAM DEVELOPMENT

This chapter discusses RSX-IIM features that pertain to user program
development.

5.1 PROGRAMMING LANGUAGES AND SORT UTILITY

RSX-IIM supports several programming languages and a powerful sorting
utility:

• MACRO-II

• FORTRAN IV and FORTRAN IV-PLUS

• COBOL

• SORT-II

• BASIC-II

• BASIC-PLUS-2

MACRO-II is the standard language for RSX-IIM; translators
othei supported languages are optional and must be
separately.

5.1.1 MACRO-II

for the
purchased

The programmer working closely with the PDP-II hardware can use the
powerful MACRO-II Assembler. In addition to allowing the user to
write code using the machine-language instructions, MACRO-II allows
the programmer to define "macros" that may be invoked to generate
repetitive coding sequences.

5.1.2 FORTRAN

The FORTRAN (FORmula TRANslation) language is especially useful in
scientific and mathematical applications. PDP-II FORTRAN conforms to
the specifications of American National Standard FORTRAN (X3.9-1966),
and includes substantial extensions to that standard.

The FORTRAN system consists of a compiler, a library of functions, and
an object time system (OTS). RSX-IIM also provides a set of FORTRAN
callable Instrument Standard of America (ISA) process control
subroutines. The compiler produces object code from the source

5-1

PROGRAM DEVELOPMENT

program, which is then linked by the Task Builder to create a task.
The OTS consists of routines that are selectively linked with the
user's program to perform certain arithmetic, I/O, and
system-dependent service operations. The OTS also detects and reports
runtime error conditions.

RSX-llM supports both FORTRAN IV and its superset, called FORTRAN
IV-PLUS. FORTRAN IV-PLUS is an optimizing compiler that generates
highly efficient code that utilizes the floating point processor.

5.1.3 COBOL

COBOL (Cammon Business Oriented Language) is an English-like
programming language designed primarily for business use. PDP-II
COBOL conforms to the American National Standard 1974 COBOL standard,
and contains many high-level features. Individual COBOL modules
conform to the American National Standard implementation levels as
follows:

Module

Nucleus

Level

2
2
2
2
2
2

Table handling
Sequential I/O
Relative I/O
Indexed I/O
Segmentation
Library 1 and

part of 2
Interprogram

Communication

5.1.4 SORT-II

1

The SORT-II utility program accepts an input file from any peripheral
device. Based on the sorting technique selected by the user, SORT-II
either sorts the contents of the input file or extracts and sorts key
information from the records of the input record into a permanent
output file.

5.1.5 BASIC-II

BASIC-II is easy to learn
educational, business, and
"immediate" mode allows each
in; thus the computer
Alternatively, a program can
unit.

5.1.6 BASIC-PLUS-2

and use, and has wide acceptance in
scientific applications. PDP-II BASIC's

statement to be executed as it is typed
can be used like a desk calculator.
be entered, edited, and then run as a

Unlike BASIC-II, BASIC-PLUS-2 is a compiler system that is designed to
provide the enhanced speed of execution that is possible with a
compiled task. Additionally, BASIC-PLUS-2 provides easily-used
debugging features and a language integrated I/O syntax that gives the
user convenient access to the file handling and data record
manipulation facilities of RMS-ll (see Section 6.2.2).

5-2

PROGRAM DEVELOPMENT

5.2 EDITING UTILITIES

RSX-IIM provides three utility tasks for creating and editing source
files. These editors are:

• The DEC Editor (EDT)

EDT is a standard text editor offered on most Digital
Operating Systems. Thus, it represents a common editing
language across systems. EDT's features include:

- English language-based commands

- Hard-copy and screen display

- On-line error diagnosis

- File and buffer I/O handling

- Line and Character Editing modes

- Maneuverable cursor and line-pointer

• The Line Text Editor Utility Program (EDI)

EDI is an interactive context-editing program that provides
the capability to create and modify source programs and other
ASCII text material. EDI can be directed by means of
terminal commands to read a line, or group of lines, from the
input file into an internal buffer. The user can then, by
means of additional commands, examine, delete, and change
text, and insert new text at any point in the buffer. After
the line or block of lines has been edited, the user can
issue a command to write the data into a new file.

• The Source Language Input Program (SLP)

SLP is a batch-oriented line editing program that is used to
create and maintain source language files on disk. SLP also
permits the user to create indirect files that contain SLP
edit-control commands. The edit-control commands either
delete, replace, or insert a line of text. SLP can also be
used to obtain a line-numbered listing of a file as an
editing aid.

5.3 DEBUGGING AIDS

5.3.1 Online Debugging Tool (ODT)

RSX-llM supports the Online Debugging Tool (ODT), an octal debugger,
to help programmers debug programs written in MACRO-II. A programmer
incorporates ODT at task build, and then interacts with ODT and the
object program from an interactive terminal to:

• Print the contents of any location for examination or
alteration,

• Run all or any portion of the object program using the
breakpoint feature,

5-3

PROGRAM DEVELOPMENT

• Search the object program for specific bit patterns,

• Search the object program for words that reference a specific
word,

• Calculate a block of words or bytes with a designated value,
and

• Fill a block of words or bytes with a designated value.

The breakpoint is one of ODT's most useful features. It allows the
user, when debugging a program, to run the program to a predetermined
point, and at that point to examine and possibly modify the cotitents
of various registers or locations. In this way, ODT acts as a monitor
to the user program.

5.3.2 Post-Mortem and Snap-Shot Dumps

RSX-IIM includes a task called PMD that produces "post-mortem" dumps
after a task terminates abnormally and "snap-shot" dumps requested by
programs. The dumps produced by PMD provide the following
information:

• The task name and reason for the dump,

• The contents of the task's registers, stack, and program
counter at the time of the dump,

• The devices being used and the files open at the time of the
dump,

• The status bits, event flags, and I/O count for the task,

• The terminal that initiated the task,

• The device from which the task was loaded, and the physical
address of the task image file, and

• The task's virtual memory, displayed in word octal, Radix-50,
byte octal, and ASCII.

Programmers can use these dumps to debug a program offline, and when
the program has not been linked to ODT.

5.4 THE TASK BUILDER

A MACRO or a higher level
steps to create a task
programmer must:

language· programmer
and to prepare it

performs four
for execution;

basic
the

1. write a source program and then enter it into a source file
from a terminal,

2. Submit the source file to the MACRO-II Assembler or to the
appropriate higher level language compiler,

3. Create an executable task by submitting the object code (the
assembled or compiled program) to the Task Builder, and

4. Issue an MCR command to install the task image (see Section
3.2.1).

5-4

PROGRAM DEVELOPMENT

Figure 5-1 illustrates the steps in creating a FORTRAN task.

>FOR

COMPILER

Figure 5-1 Steps in Creating a FORTRAN Task

Task Builder functions include:

• Linking object modules,

EXECUTING
TASK

• Resolving any references to a system object-module library or
user object-module library,

• Allocating required system and task memory,

• Producing an optional memory map file that describes the
allocation of storage, the separate modules that comprise the
task, and all global-symbol values,

• Building an overlaid task according to an overlay description
supplied by the user.

• Linking the task to shared regions, which are blocks of code
or data that are shared among numerous tasks.

5-5

CHAPTER 6

FILES AND I/O OPERATIONS

This chapter introduces the file system supported by RSX-llM and
describes some basic aspects of I/O operations. In RSX-llM, a file is
an owner-named area on a volume; a volume is a magnetic medium such
as a disk, a DECtape, or a magnetic tape.

6.1 FILES-II

Files-II is a software system that oversees the storage and handling
of files held on volumes. Files-II volumes are magnetic media that
have been specially formatted by means of an MCR command called
Initialize Volume. (Files-II magnetic tapes conform to the American
National Standard Magnetic Tape Labels and File Structure for
Information Interchange X3.27-1969.) Volumes that are not properly
formatted are considered to be "foreign." Files-II cannot directly
access foreign volumes; however, RSX-IIM includes a file exchange
utility that translates files in DIGITAL's DOS or RT-ll format into
Files-II format.

Files-II is the standard file system for the RSX-IID and lAS operating
systems, as well as for RSX-IIM. Files-II volumes are therefore
completely compatible among all three operating systems.

User tasks can access foreign volumes to perform I/O independently of
Files-II; this capability is often necessary for real-time
applications.

6.1.1 File Ownership and Directories

When an RSX-IIM user creates a file, the system places the file name
in a User File Directory (UFD), and stores the user's current User
Identification Code (UIC) with the file name to indicate the owner of
the file. In most cases, the UFD corresponds to the owner UIC; but a
file can be listed in a UFD that is not related to the owner code. It
is also possible for a file to be listed simultaneously in more than
one UFD.

A UFD is itself a file that a user must explicitly create by means of
the MCR command UFD. A user specifies a UFD in the format of a UIC:
[g,m] where g and m are octal numbers that represent the user's group
and member number respectively. The actual name of the UFD is a
concatenation of the group and member numbers, terminated by .DIR.
For example, the name of the directory that corresponds to the UIC
[203,165] is 203165.DIR. All UFDs are listed in each volume's Master
File Directory (MFD), which corresponds to UIC [0,0] and is therefore
named OOOOOO.DIR. The directories (both UFOs and MFDs) contain the

6-1

FILES AND· I/O OPERATIONS

names of files as well as pointers to each file's header.
header contains information about the physical location of
segments.

The file
the file

6.1.2 File Protection

in Anyone who wants to access a file must know the UFD
listed~ This knowledge; however, is not sufficient to

which
allow

A user must also satisfy conditions specified in a protection
associated with the file to be accessed.

it is

mask

The protection mask specifies the types of access allowed to four
defined user groups. The four types of access are read, write,
extend, and delete. The four user groups, defined according to UIC,
are:

• System tasks and users that have a privileged UIC

• Owner tasks and users that run under the same UIC as the
file's owner

• Tasks and users whose UIC is in the same group as the file's
owner

• All other tasks and users

6.1.3 File Specifiers

To refer to a file, a user supplies a standard file specifier in an
MCR or task command string. The specifier includes the following
information:

• The device holding the volume that contains the file

• The UFD in which the file is listed

• The filename

• An abbreviation that describes the contents of the file (that
is, the file "type")

• A number that differentiates one version of the same file
from another

The file system uses the information supplied in the specifier to
retrieve the file and to act upon it as directed by the command string
in which the specifier appears.

6.1.4 File Manipulation

The Files-II system disguises differences between files held on
different types of volumes and ensures the integrity of files as they
are transferred from one type of volume to another.

Before a file can be accessed, the volume that contains the file must
be known to the system. The user issues an MCR command to perform
this operation. Once the required volumes are ready, the user can
manipulate files by means of file utilities or user-written tasks.

6-2

FILES AND I/O OPERATIONS

The most commonly used file utility is the Peripheral Interchange
Program (PIP). The major functions performed by PIP are:

• Copying files from one device to another

• Deleting files

• Renaming files

• Listing file directories

6.2 TASK I/O OPERATIONS

6.2.1 File Control Services and Record Management Services

User tasks running on RSX-IIM access data within files through the use
of two sets of subroutines:

• File Control Services (FCS)

• Record Management Services (RMS)

FCS and RMS are to individual files what Files-II software is to
entire volumes. As discussed previously, Files-II routines oversee
the storage and handling of files on volumes. Through the software
mechanisms of MFDs, UFDs, file specifiers, and protection
classifications, Files-II provides access to volumes, imposes a
logical structure upon them, and maintains their integrity. FCS and
RMS, on the other hand, oversee the storage and handling of data
within files. They provide access to individual files, impose logical
structures upon them, and maintain the integrity of the user data they
contain.

Through FCS or RMS, user tasks access files on Files-II volumes and
process their contents using either block-oriented or record-oriented
I/O operations. Block-oriented operations treat files as arrays of
equal-sized structures called virtual blocks. The size of virtual
blocks in a file is determined by the type of volume containing the
file. On diik volumes, virtual blocks in all files are always 512
bytes long. On ANSI-compatible magnetic tapes, in contrast, the user
has the option of specifying block sizes other than 512 bytes.

Record-oriented I/O operations treat files as collections of logical
records. The size of individual logical records is specified by the
user rather than being determined by the physical medium. FCS and RMS
allow tasks to write records to files such that they can be
subsequently retrieved at will.

The manner in which records can be retrieved depends on the logical
structure, or file organization, imposed upon files by FCS or RMS.
FCS imposes a single file organization upon all files. FCS views the
contents of a file as a continuous sequence of user records. The
sequence in which records appear is the same as the sequence in which
they were written to the file. This logical structure is called the
sequential file organization. Files on magnetic tape or card readers,
for example, are of necessity sequentially organized since the
physical media permit no other structure. However, FCS provides only
a single file organization for all files regardless of medium.

6-3

FILES AND I/O OPERATIONS

For its sequentially organized files, FCS provides two methods (access
modes) of storing and retrieving individual records. Sequential
access mode stores successive records physically adjacent to previous
records and retrieves records based on this adjacency. The second
access mode -- random access -- is permitted only for disk files
containing equal-sized records. In FCS random access mode, tasks can
read and write records by specifying their relative position (from I
to n) in the file. Successive I/O operations can access records
anywhere within the file without regard to the inherent physical
sequence.

In contrast to FCS, RMS provides three file organizations
sequential, relative, and indexed (the indexed file organization is
supported under separate license by the RMS-IIK product). The
sequential file organizations of FCS and RMS are identical. RMS,
however, does not support FCS-style random access to sequential files.
Rather, through the relative file organization, RMS allows records to
be read and written either sequentially or by specifying their
relative position (again a number from I to n) from the beginning of
the file. Finally, the indexed file organization allows tasks to
retrieve records randomly by specifying the contents of identifying
fields (called key fields) within the records.

6.2.2 Device Independence

Using FCS and RMS, an RSX-IIM programmer codes independently of the
specific physical characteristics of devices; that is, the programmer
does not need to know which devices the program eventually uses for
its I/O operations (except for the requirement that random access mode
can be performed only on disk files). A program performs I/O on
Logical Unit Numbers (LUNs), which the programmer or an operator
subsequently assigns to specific devices before the program actively
uses the LUNs.

An operator can subsequently issue an MCR command to change the
physical device used for I/O, if the device fails, for example. The
command redirects all I/O intended for one device to another device of
the same or similar type. The redirection has no effect on LUN
assignments; and FCS or RMS makes the change in device
characteristics transparent to the programmer.

Logical devices provide another means of associating LUNs with
physical devices. Instead of directly assigning a LUN to a physical
device, a task can assign a LUN to a logical device. An operator must
then issue an MCR command to associate the logical device name with a
physical device unit. A logical device name is similar to a logical
unit number; it does not correspond to a physical device until a
device is explicitly assigned to it.

6.3 PHYSICAL I/O OPERATIONS

Physical I/O operations involve the transmission of data between main
memory and connected peripheral devices. In RSX-IIM, a connected
device is inoperable unless there is specific software resident in
memory for that device type. This software can take the form of
either an I/O driver or a user task that connects directly to a
hardware vector associated with the device.

An I/O driver performs functions that enable physical I/O operations
to occur. Drivers for most device types are built into the Executive

6-4

FILES AND I/O OPERATIONS

at system generation. RSX-IIM includes drivers for all the standard
supported devices. In addition, RSX-IIM allows the incorporation of
user-written I/O drivers for nonstandard devices. This capability is
essential for real-time applications that communicate directly with
devices such as production machinery or laboratory equipment.

Some installations have one or more devices that are only occasionally
used. To avoid wasting memory with permanently resident but seldom
used I/O drivers, a user can select a system generation option that
allows drivers to be loaded and unloaded. Note, however, that some
drivers are not loadable.

An alternative approach to I/O drivers is the connect to interrupt
vector facility provided by the RSX-IIM Executive. Through this
facility, the user task itself, rather than an I/O driver, can receive
the hardware interrupts generated through hardware vectors dedicated
to the device.

6-5

Acquisition,
data, 2-1

Active task, 3-4
Address,

physical, 3-2, 3-10
virtual, 3-2, 3-10

Address space,
extended, 3-9
logical, 3-10
physical, 3-10
virtual, 3-10

Aids,
debugging, 5-3

Allocating checkpoint space,
3-5 .

Allocation,
device, 4-4

Applications,
laboratory, 2-2
medical, 2-2
real-time, 2-1
RSX-llM, 2-1

Assembler,
MACRO-II, 5-1

AST, 3-9
AST entry points, 3-9
AST service routines, 3-9
Asynchronous System Traps,

3-9
Attached terminal, 4-4

BASIC, 5-2
BASIC-PLUS-2, 5-2
Basic MCR, 1-2
Batch editor, 5-3
Blocked task, 3-5
Breakpoint, 5-3
Builder,

Task, 5-4

Central Processing Unit,
3-3

Checkpoint file, 3-6
Checkpoint space, 3-6

allocating, 3-6
Checkpointing, 3-6
COBOL, 5-2
Code,

User Identification, 4-4, 6-1
Conunand files,

indirect, 4-2

INDEX

Commands,
MCR, 4-1
multiuser, 4-3
privileged, 4-2, 4-3

Communications,
network, 2-3

Concurrent program
execution, 3-3

Console Routine,
Monitor, 4-1

Control,
Executive, 3-3

Control Services,
File, 6-3

CPU, 3-3
Creating a task, 5-4

Data acquisition, 2~1
Debugging aids, 5-3
Debugging Tool,

Online, 5-3
DECNET-ll, 2-3
DECNET-IIM, 2-3
DEC Standard Editor (EDT), 5-3
Development,

program, 2-1, 2-3
Device,

logical, 6-4
Device allocation, 4-4
Device independence, 6-4
Devices,

private, 4-4
public, 4-4

Diagnostic tasks, 4-5
Directives,

memory management, 3-10
system, 3-9

Directory,
Master File, 6-1
System Task, 3-4
User File, 6-1

Distribution of resources, 3-6
Dormant task, 3-4
Driver,

I/O, 6-4
Dumps,

post-mortem, 5-4
snap-shot, 5-4

EDI, 5-3
Editor,

batch, 5-3

Index-l

Editors,
text, 5-3

EDT, 5-3
Entry points,

AST, 3-9
SST, 3-9

Error logging, 4-5
Event flag numbers, 3-9
Event flags, 3-9
Events,

real-time, 2-1
significant, 3-7

Execution,
concurrent program, 3-3
sequential program, 3-3

Executive, 3-1
Executive control, 3-3
Extended address space, 3-9
External task scheduling, 4-2

Failure restart,
power, 4-6

FCS, 6-3
File,

checkpoint, 3-6
File Control Services, 6-3
File Directory,

Master, 6-1
User, 6-1

File exchange utility, 6-1
File manipulation, 6-2
File processor,

indirect, 4-3
File protection, 6-2
File specifiers, 6-2
File symbols,

indirect, 4-3
File system, 6-1
Files, 6-1

indirect command, 4-2
Files-ll format, 6-1
Flag numbers,

event, 3-9
Flags,

event, 3-9
Foreign volumes, 6-1
Format,

Files-ll, 6-1
FORTRAN IV, 5-2
FORTRAN IV-PLUS, 5-2

Generation,
system, 1-1

INDEX (Cont.)

Identification Code,
User, 4-4, 6-1

Image,
task, 5-4

Indirect command files, 4-2
Indirect file processor, 4-3
Indirect file symbols, 4-3
Input,

solicited, 4-4
Installation,

task, 3-4
Installed task, 3-4
Interchange Program,

Peripheral, 6-3
Interrupts,

software, 3-9
I/O driver, 6-4
I/O operations, 6-1, 6-3

KTll memory management unit,
3-2, 3-10

Laboratory applications, 2-2
Languages,

supported, 2-3, 5-1
Logging,

error, 4-5
Logical address space, 3-10
Logical device, 6-4
Logical Unit Numbers, 6-4
LUN's, 6-4

MACRO-ll Assembler, 5-1
Maintenance,

system, 4-5
Manipulation,

file, 6-2
Manufacturing, 2-2
Mapped system, 3-1
Mask,

protection, 6-2
Master File Directory, 6-1
MCR, 4-1

Basic, 1-2
MCR commands, 4-1
Medical applications, 2-2
Memory, 3-1
Memory management

directives, 3-10
Memory management unit,

KTI1, 3-2, 3-10

Index-2

INDEX (Cont.)

~emory organization, 3-1
Memory requirements,

minimum, 1-1
MFD, 6-1
Minimum memory requirements, 1-1
Monitor Console Routine, 4-1
Multiprogramming,

real-time, 3-1
Multiuser commands, 4-3
Multiuser protection system, 4-4

Network communications, 2-3
Numbers,

event flag, 3-9
Logical Unit, 6-4

ODT, 5-3
Online Debugging Tool, 5-3
Online Task Loader, 1-2
Operation,

system, 4-1
terminal, 4-3

Operations,
I/O, 6-1, 6-3

Organization,
memory, 3-1

OTL, 1-2

Partition, 3-1
system-controlled, 3-2
user-controlled, 3-2

Partition types, 3-2
Peripheral Interchange

Program, 6-3
Physical address, 3-2, 3-10
Physical address space, 3-10
PIP, 6-3
PMD, 5-4
Points,

AST entry, 3-9
SST entry, 3-9

Post-mortem dumps, 5-4
Power failure restart, 4-6
Priority,

swapping, 3-7
task, 3-5

Private devices, 4-4
Privilege status,

terminal, 4-3
Privileged commands, 4-2, 4-3
Process control, 2-2
Processor,

indirect file, 4-3

Program development, 2-1, 2-3
Program execution,

concurrent, 3-3
sequential, 3-3

Programming languages,
supported, 5-1

Programs, 3-1
Protection,

file, 6-2
Protection mask, 6-2
Protection system,

multiuser, 4-4
Public devices, 4-4

Ready-to-run task, 3-4
Real-time applications, 2-1
Real-time events, 2-1
Real-time multiprogramming, 3-1
Record Management Services (RMS),

6-3
Regions,

shared, 3-10
Requirements,

minimum memory, 1-1
Resources,

distribution of, 3-6
Restart,

power failure, 4-6
Round-robin scheduling, 3-6
Routines,

AST service, 3-9
SST service, 3-9

RSX-llM applications, 2-1
RSX-llS, 1-2

Scheduling,
external task, 4-2
round-robin, 3-6

Sequential program
. execution, 3-3

Service routines,
AST, 3-9
SST, 3-9

Services,
File Control, 6-3
Record Management, 6-3

Shared regions, 3-10
Significant events, 3-7
Slave terminal, 4-4
SLP, 5-3
Snap-shot dumps, 5-4
Software interrupts, 3-9
Solicited input, 4-4
SORT-ll, 5-2

Index-3

INDEX (Cont.)

Space,
allocating checkpoint, 3-6
checkpoint, 3-6
extended address, 3-9
logical address, 3-10
physical address, 3~10
virtual address, 3-10

Specifiers,
file, 6-2

SST, 3-9
SST entry points, 3-9
SST service routines, 3-9
State,

task, 3-4
Status,

terminal privilege, 4-3
STD, 3-4
Subpartition, 3-2
Substitution,

symbol value, 4-3
Supported languages, 5-1
Swapping, 3-6
Swapping priority, 3-6
Symbol value substitution, 4-3
Symbols,

indirect file, 4-3
Synchronous System Traps, 3-9
System,

file, 6-1
mapped, 3-2
multiuser protection, 4-4
unmapped, 3-2

System directives, 3-9
System generation, 1-1
System maintenance, 4~5
System operation, 4-1
System Task Directory, 3-4
System Traps,

Asynchronous, 3-9
Synchronous, 3-9

System-controlled partition,
3-2

Task,
active, 3-4
blocked, 3-4
creating a, 5-4
dormant, 3-4

Task (Cont.),
installed, 3-4
ready-to-run, 3-4

Task Builder, 5-4
Task Directory,

System, 3-4
Task image, 5-4
Task installation, 3-4
Task priority, 3-5
Task scheduling,

external, 4-2
Task state, 3-5
Tasks, 3-1

diagnostic, 4-5
Terminal,

attached, 4-4
slave, 4-4

Terminal operation, 4-3
Terminal privilege status, 4-3
Text editors, 5-3
Tool,

Online Debugging, 5-3
Traps,

Asynchronous System, 3-9
Synchronous System, 3-9
system, 3-9

UFO, 6-1
UIC, 4-4, 6-1
Unit Numbers,

Logical, 6-4
Unmapped system, 3-1
User File Directory, 6-1
User Identification Code,

4-4, 6-1
User-controlled partition, 3~2
Utility,

file exchange, 6-1

Value substitution,
symbol, 4-3

Virtual address, 3-2, 3-10
Virtual address space, 3-10
Volumes, 6-1

foreign, 6-1

Index-4

Introduction to RSX-llM
AA-2555C-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ ___

Street __ _

City ____________________________ State _____________ Zip Code ______________ _

or
Country

.--Fold lIere--

.--- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

